
J .  Fluid Mech. (1976), vol. 75 ,  part 3 ,  pp. 577-591 

Printed in  Great Britain 

577 

Stability of tubular film flow: 
a model of the film-blowing process 
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Methods of linear hydrodynamic stability are applied to analyse the stability of 
the isothermal Newtonian tubular film flow model of the industrial film-blowing 
process. The infinitesimal disturbances are assumed to possess axisymmetry. 
The relevant eigenvalue problem is formulated. A straightforward numerical 
scheme is developed to deal with the problem. Results are presented in the form 
of neutral-stability curves in the relevant parameter space. The significance and 
relevance of these to the industrial process are briefly discussed. 

1. Introduction 
In a series of papers Pearson & Petrie (197Oa-c) analysed the film-blowing 

process, an industrial process for manufacturing thin polymer film. These 
authors developed a mathematical model of the kinematics and dynamics of the 
process. In  the film-blowing process (see figure I) ,  polymer melt is extruded 
continuously through a circular slot die to form a thin-walled tube. This tube is 
drawn upwards by being passed through a pair of driven nip rolls. The nip rolls 
also form an air-tight seal. Air introduced through the centre of the die is retained 
inside the tube and inflates it into an elongated bubble. Thus as the polymer film 
moves towards the nip rolls it is being drawn longitudinally by these rolls and 
stretched transversely by the internal pressure. The transition of the molten 
polymer to a solid film is accelerated and localized by a jet of cold air directed 
onto the outer surface of the film from an annular ring just above the die. A fairly 
distinct freeze-line is formed. Above the freeze-line the film undergoes no further 
deformation. Banks of converging rollers are placed below the nip rolls to guide 
and collapse the bubble. For further details of the process see, for example, 
Schenkel(l966, p. 319). 

The free-surface tubular film flow of Pearson & Petrie attempts to model the 
flow of the molten polymer between the die exit and the freeze-line. To keep the 
problem manageable these authors assumed the flow to be isothermal in the flow 
field of interest, and the material to be an incompressible Newtonian fluid with 
constant viscosity p .  Since the thickness of the film is everywhere small com- 
pared with other linear dimensions of the flow field, it has been shown $hat the 
variations of all flow variables across the thickness of the film can be neglected 
compared with their variationsin the direction of the flow. In  normal film-blowing 
operation the viscosity of the melt is high and the velocity involved is small, so 
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FIGURE 1. The film-blowing process (after Pearson & Petrie 1970a). 

that the appropriate Reynolds number is small. Under these conditions viscous 
forces will dominate and all but viscous and pressure forces in the momentum 
equations can be neglected. The dependent variables in these equations are the 
radius of the tube a, the thickness of the film h. and the velocity of the fluid v. 
See figure 2. These variables are functions of the axial co-ordinate of the cylin- 
drical polar co-ordinate system (p, 4 , ~ ) .  The freeze-line height z8 is an indepen- 
dent parameter of the isothermal flow. 

This paper examines the stability of the film-blowing process. Infinitesimal 
disturbances are superimposed on the steady Pearson & Petrie model. Methods 
of linear hydrodynamic stability theory are applied to study the temporal 
behaviour of these disturbances. Only axisymmetric disturbances are considered. 
For the more general problem of non-axisymmetric disturbances see Yeow 
(1972). 
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FIGURE 2. The tubular film flow model (after Pearson & Petrie 1970a). 

2. The steady flow equations 
This section summarizes the results of Pearson & Petrie needed in the stability 

analysis. 
The rate-of-strain tensor a t  any point (+, 2) on the film can be shown to be 

dv cos0 dh 
ell = cos0- 

dx’ e22 = - 
cos0 da 

e33 = -v- 
a dx’ 

where 8 is the angle between the bubble surface and the vertical, i.e. 

tan8 = da/dx. 
37-2 
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The 1-, 2- and 3-directions are respectively the direction of flow, the direction of 
the outward-pointing normal to the film and the azimuthal direction. The stress 
tensor is related to the rate-of-strain tensor by the simple Newtonian constitutive 
equation 

t.. 23 = -p&ii + 2peii. 

p is the isotropic pressure. The condition that the normal stress is zero (relative 
to atmospheric pressure) at the free surfaces gives 

t,, = 2p(-----)cose, dv vdh 1 dx hdx 

(adx hdx) J t, = 2pv ----- Ida ldh  case. 

The shape of the bubble is determined by the balance between the viscous 
stresses tll and t3,, the axial tension f, applied by the nip rolls and the slight 
constant positive pressure A p  inside the bubble. A force balance on the section 
of the bubble between the heights x and x + dx gives 

d(2nhtl,acos 8)/dx = d(na2Ap)/dx. (3) 

Integrating this between the height x and the freeze-line yields 

2nap1 cos 8 + n(aE - a2) A p  = f,, 

where p, is the viscous force per unit width of the bubble in the 1-direction, 
i.e. pl = t,, h. a, is the radius at x = x,. Treating the thin film as a membrane, force 
balance in the normal direction requires 

Ap = drl +Phlr3, (4) 

where p h  is the viscous force per unit. width of the bubble in the 3-direction, i.e. 
ph = t33 h. rl and r3 are the two principal radii of curvature of the surface, i.e. 
r, = - sec3B(d2a/dz2)-1 and r, = a sec 8 ( = a/cos 8). A final relationship among 
a, h and v is 

Q = 2nahv, 

where Q is the steady volumetric flow rate from the circular slot die, assuming 
h < a. 

Introducing dimensionless variables 

I A = a/a,, H = h/h,, X = x/a,, T' = v/vo, 
ql = t l l h O / ( A p a O ) ,  T33 = t33h0/(Apa0) 

and dimensionless parameters 

the above set of equations reduces to 

A' = tane,  

H'/H = - A'/2A - tsec28(T* + AZB), 

2A2(T*+A2B)8' = 3sin28+A(T*-3A2B). 
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A prime denotes dldx, and a,, h, and vo are the values of a, h and v at X = 0 
respectively. 

The set of boundary conditions relevant to  the physical problem that moti- 
vated the analysis is 

A = H = l  at X = O ,  
dA/dX = 0 a t  X = X,. 

Numerical solutions of these equations are given by Pearson & Petrie. These 
authors also discussed the nature of the solutions and the physical interpretations 
of the parameters 23, and X,. Under normal operating conditions of the film- 
blowing process these parameters assume values in the ranges 

0.075 < B < 0.4, 0.5 < T, < 2.5, 5 < X ,  < 20. 

3. Axisymmetric disturbances 
Methods of linear hydrodynamic stability are now applied to study the effect 

of small disturbances on the steady tubular film flow. In  the perturbed flow it is 
assumed that Ap remains unchanged. To keep the analysis simple, disturbances 
are assumed to be axisymmetric and the velocity disturbance is assumed to  have 
no component in the azimuthal direction. The disturbances are decomposed into 
Fourier components of the form 

A ( X ,  T )  = B ( X ) ( l  +a*(X)  e-inT), 

H ( X ,  T) = B ( X ) ( I  +h*(X)e-inT), 

v ( X ,  T) = F ( X ) ( 1  +v*(X)e-inT). 

Terms involving starred quantities are the time-dependent disturbances. 
These are assumed to be small compared with the steady flow variables, which 
are denoted by overbars. Two new dimensionless variables have been introduced 
in the above equations: a dimensionless time T and a dimensionless frequency 0. 
These are defined by 

The physical interpretations of t and (t) are self-evident.. 
Let (21, 22,  x3) be a dimensionless cylindrical polar co-ordinate system, i.e. 

x1 = pla,, x2  = q5 and x3 = X .  Superscripts are used here to signify the contra- 
variant nature of these co-ordinates. Let (ul, u3) be the dimensionless surface co- 
ordinates defined on the inner surface of the bubble by d = x3 and u3 = x2. 
The metric tensor {aa,> of this surface co-ordinate system is related to the spatial 
metric tensor (gij> of the (xl, x2, x3) co-ordinates by 

a,,=gijtkt$, i , j= 1,2,3, a,p= 1,3, 

where t i  = axi/aua. In the above equations summation over repeated indices is 
understood. Written explicitly the surface metric tensor is 

(6) i 
T = t(v,/a,), SL = o(a,/vo). 
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Based on the surface co-ordinates u1 and u3, a spatial co-ordinate system 
(ul, u2, u3) is now defined in the region occupied by the film. u2 is taken to be in 
the direction of the outward-pointing normal to the inner surface of the bubble 
such that = h2 (du2)2, where ds denotes an infinitesimal displacement. 
For < 1, d, u2 and u3 form an orthogonal co-ordinate system. The metric 
tensor of this spatial co-ordinate system is 

[l+(iA/aX)2 H 2  0 0 0 1 .  

{%j> = 
o A2 

Upon substituting (6) into the above and linearizing with respect to the infinites- 
imal disturbances, {uij} simplifies to 

0 
O 1. 0 

a2 + 211f2h* 

aA 2 dBd(Ba*) 
I +  - +2-- 

d X  d X  

0 B2+ 22%” 
{aijl = [ (dx); 

For simplicity the exponential time factor e--inT has been omitted from the above. 
It is clear that this metric tensor is time dependent. Also, in this co-ordinate 
system the only non-vanishing velocity component is V ( X ,  T ) ,  in the 1-direction. 

In a co-ordinate system with a time-dependent metric tensor, the covariant 
components of the rate-of-strain tensor are given by ( h i s  1962, p. 228) 

eij = &?aij/at + i(vi,i + vj,J. 

Commas between subscripts denote covariant differentiation. The time derivative 
in the above equation is the contribution to the rate of strain arising from 
the ‘stretching’ of the co-ordinates. Converting covariant components to 
physical components, the non-vanishing components of the rate-of-strain tensor 
become 

Substituting the linearized metric tensor given above and V from (6), the rate- 
of-strain tensor of the disturbed flow reduces to 

Ell = Ell + e B  

d( vv*) d(&*) -- - cos 6 + cos 6- -Ell sin 8 cos 8 ~ - isZ sin 8 cos 0 
d X  ” ( d X  d X  

E2, = E22+e,*, 
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E,, = Ba3 + e;, 
(Id(::*) cos 8 + E,, (v* -a* - cos 8 sin 8 

dX 
cos8+ =- 

V d A  
A dX 

=-- 

(7c) 

where tan 8 = dA/dX .  All quantities from here on are dimensionless and lineari- 
zation is understood. err, e& and eZ3 are the disturbances to the rate-of-strain 
tensor. This tensor has been made dimensionless with respect to ao/vo. In  terms 
of these disturbances, the stress tensor becomes 

Tll = Fll + t&, T33 = F3, + t&, 
where 

t f ,  = ( e & - e f ) / B ,  t;, = (e3*3-e&)/B. (8) 

The stress components of the steady flow, pll and F33, are defined in (5), t:, and 
t& are the disturbances suffered by pll and p33. The parameter B arises from the 
way the stress and rate-of-strain tensors were made dimensionless. 

All the disturbance quantities can be expressed ultimately in terms of a*, 
h* and v*. Three equations have to be found for these three variables. The first 
of these is provided by the continuity equation for incompressible fluid: 

e&+e,*,+e,*, = 0. (9) 

From (4), the first-order terms give 

(pllBh* + f l t & ) / ~ , - ~ ~ , , r ~ / R ~ +  (F33Bh*+Bit&)/R3-BF33r3*/~~ = 0. (10) 

This is the second of the three equations relating a*, h* and v*. R, and R3 are the 
dimensionless principal radii of curvature of the steady bubble; rT and r: are 
the disturbances to these radii: 

R, = R,+rT, R, = R3+r3*, 
R, = .,/ao = - see3 8(d2A/dX2)-1, 

R3 = .$ao = A sec 8, 
- 

d(Aa*) d2(ga*) d2A 
3sin8cos8--- - 

dX d X 2  / d X 2 ) ’  1 
r t  = &(a* + cos 8sin Od(za*)/dX).  I 

These equations are most easily derived by considering the principal radii of 
curvature in terms of ratios of the coeEcients of the first and second fundamental 
forms of the surface. See, for example, Aris (1962, pp. 213 and 216). 

The third equation is obtained by substituting (7) and (8) into the dimension- 
less equivalent of (3). The first-order terms give 

a -- --- - -- - -_ dZa* 
- (AHt;, cos 8 + AHT,, h* COB 8 + AHT,,a* cos 8 - AHT,, x s i n  8 case 0) 
dX 

d -  -- (A%*)  = 0. (12) ax 
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Equations (7), (8) and (11) can be used to eliminate e&, e&, e&, t;, t&, T: and T: 

fkom (9), (10) and (12) to give a set of three simultaneous linear homogeneous 
ordinary differential equations for a*, h* and v*. It will be found that these 
equations contain first and second derivatives of a* and h* and the first derivative 
of w*, In  examining the stability of the tubular film flow to smalI disturbances, 
interest is focused on the temporal behaviour of disturbances with homogeneous 
boundary conditions. Five homogeneous boundary conditions have to be 
prescribed in the present case. Three of these are easily found: 

a*(O) = V*(O)  = h*(O) = 0. (13) 

If a constant velocity is assumed for the winding up of the solid film then at the 
freeze-line the velocity perturbation must vanish, i.e. 

V*(X,) = 0. (14) 

The final boundary condition is obtained from the physical assumption that once 
the bubble passes through the freeze-line its diameter cannot undergo any further 
changes (Pearson & Petri 1970c), i.e. 

DAIDT = 0 at X = X,, 

where DIDT is the material derivative operator. In  the present case, this boun- 
dary condition reduces to 

7 d(&*)/dX - iQ&* = 0 at X = X,. (15) 

The steady flow boundary condition dJJdX  = 0 a t  X, has been used in the 
above derivation. 

Equations (9), (10) and (12) together with the boundary conditions (13)-(15) 
constitute the eigenvalue problem relevant to the stability of the tubular film 
flow to axisymmetric disturbances. The parameters of the problem are €3, T,  and 
X,, which together characterize the steady flow, and SZ, the complex frequency 
of a particular Fourier component of the disturbance. €3, T,  and X ,  enter the 
problem through the steady solution 2, i?? and 7. SZ appear8 where time deri- 
tives occur. For each point in B, T,, X, space it is expected that there exists a set of 
discrete complex SZ = SZ, + iSZi for which ths eigenvalue problem has non-trivial 
solutions. Of greatest interest is the element of this set which has the largest Qi. 
The locus of the points in B, T,, X, space for which max SZi = 0 is the neutral- 
stability surface of the flow. 

4. Numerical procedure 
A straightforward numerical scheme has been developed to deal with the 

eigenvalue problem formulated in the previous section. This scheme attempts to  
locate the neutral-stability curve in the B, T,  plane for a few selected values of X,. 
The amount of computation needed does not permit complete determination of 
the neutral-stability surface in the entire region of B, T,, X ,  space relevant to  the 
film-blowing process. 
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Equation (12) can be integrated once and rearranged to give 

t;, = -{[AHT,,(h* cos0+a*cos8- ( d ( B a * ) / d X ) s i n 8 ~ 0 ~ ~ 8 ) - ~ ~ c c * ] ~ ~  
--- 

- (ABtFl cos 0)&}/(AB cos 0)x .  

This equation expresses tfl a t  X as a function of a*, h*, v* and da*/dX at X 
and the values of these variables at the boundary X = X,. This integration 
reduces the order of the differential system from five to four. The amount of 
computation is also reduced. Note that tT1 (X,), introduced in the above equation, 
can be expressed in terms of boundary conditions a t  the freeze-line. In  principle 
it is possible to eliminate ef,, e&, etc., from the system of equations derived above 
and solve the resulting equations for a*, h* and w* numerically. However, 
because of the complexity of the equations, e;,, e&, etc., are retained as auxiliary 
dependent variables throughout the numerical integration. The equations of 
the reduced fourth-order system are set out in the appendix. They are arranged 
in a form ready for numerical integration by the Runge-Kutta procedure given 
the appropriate starting conditions. The integration was carried out from 
X = X ,  to X = 0, using boundary conditions given below. For each B, T,  and 
X,, the solutions of the steady flow problem are pre-computed and read into the 
computer as they are required. 

The actual strategy adopted to locate the eigencombination (B, T,, X,, Q) 
is based on the scheme developed by Mack (1965) to  deal with the stability of 
forced-flow compressible boundary layers. Briefly, for each set of the four 
parameters, the procedure involves finding three sets of linearly independent 
solutions of the fifth-order system satisfying the following linearly independent 
boundary conditions a t  X = X,: 

v* = 0, Dxa*/DT = 0 
and 

set 1: a* = 1, dh*/dX = 0, h* = 0; 

set 2: a* = 0, dh*/dX = 1, h* = 0; 

set 3: a* = 0, dh*/dX = 0, h* = 1.  

The first two boundary conditions are common to all three sets. It is clear that 
these sets of solutions span the space of all solutions of the fifth-order system 
which satisfy the boundary conditions (14) and (15). These solutions are linearly 
combined such that the first two boundary conditions of (13) are satisfied. In  
general the final boundary condition of (13) will not be satisfied. For a given set 
of B, T,  and Xg, a simple linear search procedure is used to vary SZr and Qi until 
the final boundary condition is met as closely as desired. This then gives an 
eigencombination (B ,  T,, X,, SZ) .  Using this procedure, points on either side of the 
neutral surface are obtained from which the neutral surface is located by 
interpolation. 

Some results of the above computations are shown in figures 3 (a)-(c). These 
are neutral-stability curves for X ,  = 7, 8 and 10. On each curve Qi = 0 and Qr 

(shown in parentheses) varies continuously. Some typical eigenvalues and the 
associated blow ratio R and reciprocal draw ratio B(X,)  are tabulated in table 1. 



586 

040 

0.35 

0.30 

0.25 

0.20 

0.15 

B 

Y .  L. Yeow 

I I I I I 
( L.1 - - 

- / - 

- /455)  - 

AS7) (2.12) 
Stable 

- - 

/&(lj76’ 
Unstable 

/ (1.18) - / (1.03) 
- 

- - 

I I I I I 

0.45 - I I I I I .  

0.40 

0.35 

(h)  
- 

- 

0.15 1 I 1 I I 1 
5.0 6.0 7.0 8.0 9.0 10.0 

Tz 



Stability of tabular $Zrn flow 587 

Point in 
figure 3(b) B T* ft, fzi R if(&) 

1 0.30 6.25 1.3119 - 0.0131 4.0798 1.18 x 10-4 
2 0.30 6-50 1.3056 + 0.0130 4.1661 7.52 x 10-5 
3 0.35 6.50 1.5991 - 0.0033 3.8222 1.08 x 10-4 
4 0.225 8.00 0.7894 - 0.0910 5.1033 7.39 x 10-7 

6 0.25 8.50 0.8048 - 0.0283 4.9737 3-82 x 10-7 
5 0.25 8.00 0.8338 + 0.0891 5.0154 1.57 x 10-6 

TABLE 1. Typical eigenvttlues for X ,  = 8.00 

These correspond to points indicated on figure 3 (b). The amount of computation 
involved in locating each neutral-stability curve with X, held constant is large. 
This has prevented the construction of a more complete set of neutral-stability 
curves with 5 d X, < 20, particularly those with X ,  2 10. 

5. Discussion 
From figures 3(a)-(c) it can be seen that the transition from stability to 

instability is in the general direction of increasing B and 27,. It is interesting to 
note that the ranges of values of B and T, that are likely to be encountered in 
normal film-blowing operations lie in the stable region of the B, T,  plane. The 
draw ratios on the neutral-stability curves are of the order of 103-107 for the 
three Xz's considered, the larger values corresponding to the longer bubbles. 
Such draw ratios are much higher than those encountered in practice. The blow 
ratios on the neutral-stability curves vary from 3.0 to 6.5. These are slightly 
larger than the normal blow ratio observed in practice but still within the 
attainable range. Even from the limited results obtained it can be concluded 
that the film-blowing process, as modelled by the simple isothermal tubular film 
flow, is a stable process under normal operating conditions as far as axisymmetric 
disturbances are concerned. This is true for X ,  = 7, 8 and 10. For X ,  < 6 d l  
attempts to find unstable solutions of the eigenvalue problem have failed. In  the 
region of the B, T, plane 0.1. < B < 1.0 and 2.0 < T, d 12.0 only stable eigen- 
solutions were found. 

The dimensionless parameter B represents the ratio of the pressure force to a 
typical viscous force while T,  is the ratio of the applied tension to the typical 
viscous force. On the upper arms of figures 3(a )  and ( b )  increasing 3 is accom- 
panied by a transition from stability to instability. Hence f, is a destabilizing 
force there. However on the lower arms of figures 3(a)  and (b)  increasing f, 
leads to stability. Hence f, is a stabilizing force there. The role of Ap, assumed 
to be unaffected by the introduction of disturbances, is just the opposite. On 
the upper arms of the neutral-stability curves it is stabilizing and on the lower 
arms, destabilizing. 

With the limited results it is not posPible to study quantitatively the effect of 
freeze-line height X ,  on the stability of the tubular film flow. However, from the 
general positions of the neutral-stability curves in figures 3 (a)-(c) it appears 
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FIGURES 4 (a, b ) .  For legend see facing page. 
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FIGURE 4. Neutral-stability curves for (a) X ,  = 7.0, (6)  X ,  = 8.0 and (c) X ,  = 10.0 
in the R, E(X,)  plane. 

that as X ,  is increased the neutral-stability curve moves nearer to  the region of 
the B, T, plane encountered in noimal film-blowing operation. In  this sense it can 
be said that short bubbles are more stable to axisymmetric disturbances than 
long bubbles. 

The blow ratio and draw ratio vary continuously on a neutral-stability curve 
in the B, T, plane. The relationship between R and a ( X , )  on the neutral-stability 
curves is of special interest too perators of the film-blowing process since in 
normal operation R and &(X,) are specified rather than B and T,. The neutral- 
stability curves in figure 3 are replotted in the R, &(X,) plane in figure 4. X ,  is 
again held fixed on each of the curves. Values of 0, are shown in parentheses. 
The stable and unstable regions of the R, H(X,)  plane are as indicated on the 
figure. Again the limited data available do not permit a systematic study of the 
effects of changing R and a(X,) on the stability of the bubble. 

The stability of isothermal tubular film flow as such is probably not directly 
relevant to the actual operation of the film-blowing process. However the 
general procedure developed in the formulation of the eigenvalue problem 
can be extended to deal with the stabiIity of more realistic models of the film- 
blowing operation. Many factors, e.g. effects of temperature variation within 
the flow field analysed, deviations from Newtonian behaviour, and effects of 
gravity and inertia, have been neglected in the present simple model of the 
process; these have been discussed by Pearson & Petrie (1970b, c) and possible 
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improvements suggested. In  a recent paper Petrie (1975) extended the analysis to 
include many of these neglected factors and obtained the bubble shape A(X) and 
film thickness E(X) for the improved models. It is worth noting that, while the 
steps leading to the eigenvalue problems for these improved models of Petrie 
will remain basically the same as that of the present analysis, the resulting prob- 
lems will almost certainly be much more complicated. More efficient numerical 
and computational schemes will have to be devised to deal with these problems. 

The author wishes to thank Prof. J. R. A. Pearson for supervizing this work 
and the Lee Foundation, Singapore for providing financial support. The major 
part of the work was carried out in the Department of Chemical Engineering, 
University of Cambridge. 

Appendix. Equations for axisymmetric disturbances 

da*/dX = d*, (A 1) 

(A 2) d(Aa*)/dX = a* dA/dX +Ad*,  

dH 
dX 

dh* - = ( i ! 2 h * - E 2 2 ( v ~ - ~ o ~ 8 ~ i n 8 - - - - h *  d(Aa*) 
dX dX cose) - -h*/H,  

( A  11) 
dvf - = ((iQ+Ell)sine--- d(Aa*) 
dX dX 

These equations are obtained as follows. 

( A  l), ( A  2 ) :  from definition of d*. 
(A 3): from (7).  
(A 4): rearrangement of (12). 

(A 5 ) :  combination of (8) and (9). 
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(A 6): from (8). 

(A 7) : 
(A 8): rearrangement of (11). 
(A 9): rearrangement of (10). 
(A 10): from (9). 
(A 11): rearrangement of (7).  
(A 12): rearrangement of (11). 

rearrangement of (7). 
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